

Specification For Approval

Date: 2017/08/28

Page : 1/12

고객 승인원 관리대장

개정번호	개정일자	개정 Page	개정이력	담당자	비고
00	2016.06.14	1~12	신규 제정	박주용	
01	2017.08.28	1~13	Chip Diagram 및 분류기준 변경	강민우	

Specification For Approval

Date: 2017/08/28

Page : 2/12

Customer: Seoul Semiconductor Co., Ltd.

Part Name: UW1111-EB-39 (395nm)

Contents:

- 1. Features and Application
- 2. Part Name
- 3. Main Materials
- 4. Electrodes
- 5. Chip Diagram
- 6. Maximum Ratings
- 7. Typical Electro-Optical Characteristics at Ta=25°C
- 8. Mechanical Specifications
- 9. Visual Inspection
- 10. Sorting Bins and Product name
- 11. Packing
- 12. Labeling
- 13. Precaution

Seoul Viosys Co., Ltd.				
Drawn by	Checked by	Approved by		
강민우	김종규	채종현		
17/08/28	17/08/28	17/08/28		

Seoul Semiconductor Co., Ltd.			
Checl	Approved by		

Specification For Approval

Date: 2017/08/28 | Page : 3/12

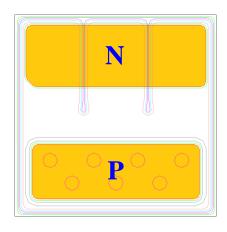
1. Features and Application

- High Luminous Intensity, Long Operation Life
- Package-less module

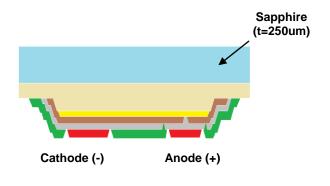
2. Part Name:

- UW1111-EB-39

3. Main Material


- Substrate: Al₂O₃ (Sapphire)

- Epitaxial Layer: GaN Based LED Structure


4. Electrodes

P-Electrode: Au alloyN-Electrode: Au alloy

5. Chip Diagram

<Fig. 1 >Plane View

<Fig. 2> Cross Sectional View

Specification For Approval

Date: 2017/08/28

Page: 4/12

6. Maximum Ratings

Item	Symbol	Value	Unit
DC forward current (Ta=25℃)	I_{f}	700	mA
Pulsed forward current ^a (Ta=25 ℃)	I_{fp}	1000	mA
Junction temperature b	T_{j}	125	°C
Operating Temperature Range	T_{op}	-30 to + 85	°C
Storage Temperature Range	Tst	-40 to +100	°C

Note. 'Maximum Ratings' mean when it exceeds the chip has the possibility of breaking down when these conditions are exceeded momentarily. 'Maximum ratings', the chip is not guaranteed to endure such conditions. 'Maximum Ratings' concerning your LED device after the chip is built into your package shall be established by yourself since these greatly depend on the design of the device, the conditions of assembly, the environment used, and so forth.

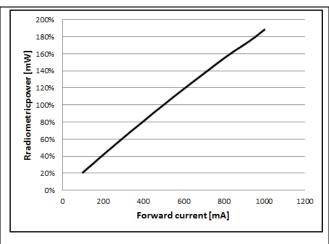
7. Typical Electro-Optical Characteristics at Ta=25°C

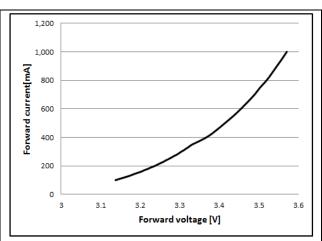
Item	Symbol	Condition	Characteristics (Ta=25°C)		(a=25°C)	Unit
Item	Symbol	Continuon	Min	Тур	Max	Omt
Reverse Current	I_R	$V_R = -5V$	0	-	1.0	uA
Turn-on Voltage	V_{F1}	$I_F=1~\mu A$	2.0	-	3.0	V
Forward Voltage	VF	I _F =500mA	3.3	-	3.6	V
Peak Wavelength 1)	$\lambda_{ m d}$	I _F =500mA	390		400	nm
Full Width Half Maximum	Δλ	I _F =500mA	-	12	-	nm
Radiant Power 2)	Po	I _F =500mA	750	825	870	mW

Note: Radiant and Peak wavelength are measured by Seoul Viosys' equipment. (*1, *2)

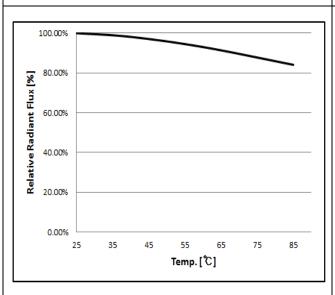
Peak Wavelength: ±1nm. (*1) Radiant Power: ±10%. (*2)

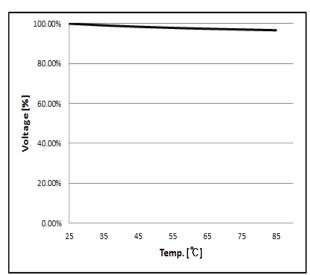
^a 1/10 Duty, f=1kHz


^b Measurement condition; Metal Core PCB


Specification For Approval

Date: 2017/08/28


Page : 5/12


Forward Current vs. Light Output

Forward Voltage vs. Forward Current

Temperature vs. Relative Radiant Flux

Temperature vs. Relative Forward Voltage

Specification For Approval

Date: 2017/08/28

Page : 6/12

8. Mechanical Specifications

(Unit: μ m)

Description	Dimension	Tolerance	
Top emitting area	1100um x 1100um	±40	
Bottom substrate	1100um x 1100um	±40	
Chip Thickness	250um	±15	
P-Pad Diameter	913um x 299um	±50	
N-Pad Diameter	983um x 337um	±50	

9. Visual inspection

Done by optical microscope (20x).

Item	Accepted (OK)/defective (N.G.)	Example
Surface dirt	accepted : if surface dirt(metal) less than 20% of chip	
Passivation film peeling	accepted : if Passivation film peeling less than 30% of chip.	
Partially missing pad	accepted [:] a < b/5 a: missing bond pad b: normal bond pad	

Specification For Approval

Date: 2017/08/28

Page : 7/12

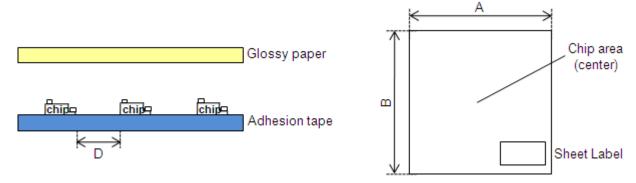
Metal peeling	rejected : if Metal peeling more than 20% of chip area.	
Bond pad scratch	accepted: if bond pad scratch (including probe mark) less than 20% of chip area.	
θ shift	accepted : θ < ±5°	θ

Specification For Approval

Date: 2017/08/28

Page: 8/12

	Inseparable chips are rejected If extra-size is less than 10%, OK.	
Chipping	Pad electrode not chipped off	
Bad cut	Not accepted : if bad cut is occurred	
Pinholes	accepted : if pinhole less than 20% of chip	



Specification For Approval

Date: 2017/08/28 | Page : 9/12

10. Packing

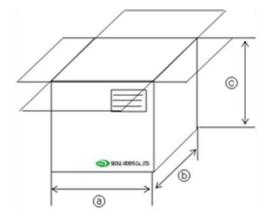
- (1) Chips on tape
 - (a) Electro-Optical measurement data should be labeled and tacked on the backside of the glossy paper. Chip area should be placed in the center of adhesion tape, and the wire-bonding pad should face towards the covered glossy paper.

(b) Chip type, Lot No. and quantity etc. should be labeled and tacked to the corner of the glossy paper.

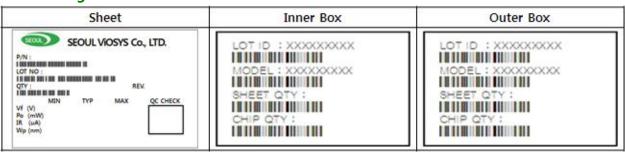
Item	Instruction
Adhesion tape	Semi- transparent blue
Glossy paper (A×B)	197mm × 220mm
Chip Qty tape	Тур. 2,000еа
Chip separation (D)	D : 0.40mm

(2) Packing for shipment

- (a) The sheets (adhesion tape + glossy paper) are packed in an anti-static electricity bag. Each anti-static bag can contain up to 20 sheets.
- (b) The anti-static bags are packed in a box. The size of this box is 250mm×65mm×275mm
- (a) \times (b) \times (c)). Each box can contain up to 5 anti-static electricity bags.
- (c) The boxes which contain anti-static electricity bags are packed in the other box. The size of this outer box is $260 \text{mm} \times 340 \text{mm} \times 290 \text{mm}$ (a) \times (b) \times (c). Each outer box can contain up to 5 inner boxes.
- (d) Each sheet / box is labeled with information describing its content. (Details please refer to section 12)



Specification For Approval


Date: 2017/08/28

Page: 10/12

11. Labeling

- (1) Sheet: The measurement data for each lot are also shown on the backside of the sheet.
- (2) Inner Box: The information about the products is also shown on the inner box.
- (3) Outer Box: The information about the products is also shown on the outer box.

12. Precaution

(1) Quality Guarantee

The chip guarantee period is three months after the delivery under the following preservation conditions. If any defective is found, the customer shall immediately inform of that to Seoul Viosys Co., Ltd. Preservation conditions (when the shipping package is unopened.)

- · Temperature: 0 ~ 60 °C
- · Atmosphere: Keep the chips in a desiccator with silica gel or with nitrogen substitution.
- (2) General precautions for use
- · Chips should be stored in a clean environment. If the Chips are to be stored for 3 months or more after being shipped from Seoul Viosys, they should be packed by a sealed

Specification For Approval

Date: 2017/08/28

Page: 11/12

container with nitrogen gas injected.

(Shelf life of sealed bags: 1year, 0~40°C of temperature, 20~70% of RH)

· This chip should not be used directly in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.

· After storage bag is open, device subjected to soldering, solder flow, or other high

temperature processes must be:

Mounted within 168 hours (7days) at an assembly line with a condition of no more than

30°C and 60% RH

· Chips require baking before mounting, if humidity card reading is >60% at, 23.5°C. chips

must be baked for 24Hrs. at 65.5°C, if baking required.

· When the chips are illuminating, the maximum ambient temperature should be first

considered before operation. If voltage exceeding the absolute maximum rating is applied

to chips, it may cause damage or even destruction to chips. Damaged LEDs will show some

abnormal characteristics such as remarkable increase of leak current, lower turn-on voltage

and getting unlit at low current.

· The appearance and specifications of the products may be modified for improvement

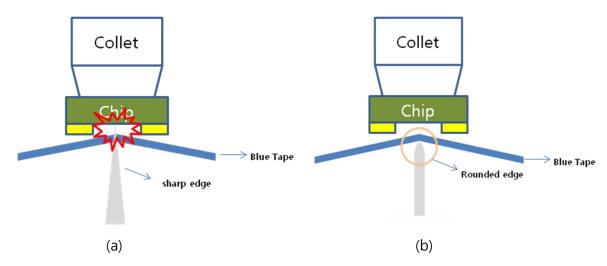
without further notice.

• The chips are sensitive to the static electricity and surge. It is strongly recommended to

use a grounded wrist band and anti-electrostatic glove when handling the LEDs.

(3) Precautions for Die Attach (Pick and Place)

· Unlike the top of chip, the bottom (The opposite side of sapphire substrate) is the


Specification For Approval

Date: 2017/08/28 | Pa

Page: 12/12

epitaxial Layer where the p-n junction is located. It is not mechanically protected and can be damaged if a sharp and hard ejector pin material is used.

· Seoul Viosys recommends an ejector pin with rounded edge to minimize the risk of mechanical damage.

(a) Sharp ejector pin tip may damage the Flip Chip (left). (b) A rounded tip minimizes the risk of damage caused by ejector pin (right).

The above specifications are subject to change with prior notice.

Seoul Viosys Co., Ltd Aug 28th, 2017